

HPE ML Data Management:
Deployment Guide
Learn about the basics of HPE ML Data Management
(MLDM) and how to install the platform within a
Kubernetes cluster.

Contents

Contents.. 1

Terms and Definitions.. 2

Introduction to MLDM ... 2

Key Features .. 3

Basic Concepts... 3

High-Level Architecture Diagram ... 4

How MLDM Works .. 5

How to Interact with MLDM .. 5

Before You Start .. 6

Install on Kubernetes ... 6

1. Install MLDM via Helm ... 7

2. Create Enterprise Key Secret .. 7

2. Configure Helm Values... 8

Add Storage Classes to Helm Values... 8

Size & Configure Object Store .. 8

Add Enterprise License Key Secret Name ... 8

Configure Authentication & Authorization ... 9

3. Deploy .. 9

4. Connect & Login .. 9

Terms and Definitions

Term Definition

HPE ML Data Management
HPE ML Data Management (MLDM) is built upon the open source
Pachyderm platform. For the latest documentation, visit the HPE ML
Data Management documentation.

Pachyderm The open source Pachyderm platform

Introduction to MLDM

MLDM is a data science platform that provides data-driven pipelines with version control and autoscaling. It is
container-native, allowing developers to use the languages and libraries that are best suited to their needs, and
runs across all major cloud providers and on-premises installations.

The platform is built on Kubernetes and integrates with standard tools for CI/CD, logging,
authentication, and data APIs, making it scalable and incredibly flexible. MLDM’s data-driven pipelines
allow you to automatically trigger data processing based on changes in your data, and the platform’s
autoscaling capabilities ensure that resource utilization is optimized, maximizing developer efficiency.

https://mldm.pachyderm.com/
https://mldm.pachyderm.com/

Key Features

The following are the key features of MLDM that make it a powerful data processing platform.

Data-driven Pipelines

• Automatically trigger pipelines based on changes in the data.
• Orchestrate batch or real-time data pipelines.
• Only process dependent changes in the data.
• Reproducibility and data lineage across all pipelines.

Version Control

• Track every change to your data automatically.
• Works with any file type.
• Supports collaboration through a git-like structure of commits.

Autoscaling and Deduplication

• Auto scale pipelines based on resource demand.
• Automatically parallelize large data sets.
• Automatically deduplicate data across the entire platform.

Flexibility and Infrastructure Agnosticism

• Use existing cloud or on-premises infrastructure.
• Process any data type, size, or scale in batch or real-time pipelines.
• Container-native architecture allows for developer autonomy.
• Integrates with existing tools and services, including CI/CD, logging, authentication, and data

APIs.

Basic Concepts

Pachyderm File System

The Pachyderm File System (PFS) is the backbone of the MLDM data platform, providing a secure,
scalable, and efficient way to store and manage large amounts of data. It is a version-controlled data
management system that enables users to store any type of data in any format and scale, from a single
file to a directory of files. The PFS is built on top of Postgres and an object store, ensuring that your data
is secure, consistent, and easily accessible. With PFS, users can version their data and work
collaboratively with their teams, using branches and commits to manage and track changes over time.

Repositories (Repo)

MLDM repositories are version controlled, meaning that they keep track of changes to the data stored
within them. Each repository can contain any type of data, including individual files or directories of
files, and can handle data of any scale.

Branches

Branches in MLDM are like those in Git. They are pointers to commits that move along a growing chain
of commits. This allows you to work with different versions of your data within the same repository.

Commits

A commit in MLDM is created automatically whenever data is added to or deleted from a repository.
Each commit preserves the state of all files in the repository at the time of the commit, similar to a
snapshot. Each commit is uniquely identifiable by a UUID and is immutable, meaning that the source
data can never change.

Pachyderm Pipeline System

The Pachyderm Pipeline System (PPS) is a core component of the MLDM platform, designed to run
robust data pipelines in a scalable and reproducible manner. With PPS, you can define, execute, and
monitor complex data transformations using code that is run in Docker containers. The output of each
pipeline is version-controlled in an MLDM data repository, providing a complete, auditable history of all
processing steps. In this way, PPS provides a flexible, data-driven solution for managing your data
processing needs, while keeping data and processing results secure, reproducible, and scalable.

Pipelines

MLDM pipelines are used to transform data from MLDM repositories. The output data is versioned in a
MLDM data repository, and the code for the transformation is run in Docker containers. Pipelines are
triggered by new commits to a branch, making them data driven.

Jobs

A job in MLDM is the execution of a pipeline with a new commit. The data is distributed and parallelized
computation is performed across a cluster. Each job is uniquely identified, making it possible to
reproduce the results of a specific job.

Datum

A datum in MLDM is a unit of computation for a job. It is used to distribute the processing workloads
and to define how data can be split for parallel processing.

High-Level Architecture Diagram

How MLDM Works

MLDM is deployed within a Kubernetes cluster to manage and version your data using projects, input
repositories, pipelines, datums and output repositories. A project can house many repositories and
pipelines, and when a pipeline runs a data transformation job it chunks your inputs into datums for
processing.

The number of datums is determined by the glob pattern defined in your pipeline specification; if the
shape of your glob pattern encompasses all inputs, it will process one datum; if the shape of your glob
pattern encompasses each input individually, it will process one datum per file in the input, and so on.

The end result of your data transformation should always be saved to /pfs/out. The contents of
/pfs/out are automatically made accessible from the pipeline’s output repository by the same name.
So, all files saved to /pfs/out for a pipeline named foo are accessible from the foo output repository.

Pipelines combine to create DAGs, and a DAG can be comprised of just one pipeline.

How to Interact with MLDM

You can interact with your MLDM cluster using the PachCTL CLI or through Console, a GUI.

• PachCTL is great for users already experienced with using a CLI.

https://mldm.pachyderm.com/latest/learn/glossary/project/
https://mldm.pachyderm.com/latest/learn/glossary/input-repo
https://mldm.pachyderm.com/latest/learn/glossary/input-repo
https://mldm.pachyderm.com/latest/learn/glossary/pipeline
https://mldm.pachyderm.com/latest/build-dags/datum-operations
https://mldm.pachyderm.com/latest/learn/glossary/output-repo
https://mldm.pachyderm.com/latest/learn/glossary/job/
https://mldm.pachyderm.com/latest/learn/glossary/glob-pattern/
https://mldm.pachyderm.com/latest/learn/glossary/pipeline-specification/
https://mldm.pachyderm.com/latest/learn/glossary/dag

• Console is great for beginners and helps with visualizing relationships between projects, repos,
and pipelines.

The following are some quick links to help you perform operations in MLDM using both the CLI and
Console.

• Project Operations
• Pipeline Operations
• Branch Operations
• Datum Operations
• Provenance Operations

Before You Start

Before you can deploy MLDM, you will need to perform the following actions:

1. Install Kubectl
2. Install Helm
3. Deploy Kubernetes
4. Deploy two Kubernetes persistent volumes for MLDM metadata storage
5. Deploy an object store using a storage provider like MinIO, EMC’s ECS, or SwiftStack to

provide s3-compatible access to your data storage.
6. Install PachCTL and PachCTL Auto-completion.

Note: This guide assumes that you are deploying MLDM on-prem; for all of the most up-to-date
installation methods, see our online documentation.

Install on Kubernetes

1. Install NVIDIA GPU Operator via Helm

The NVIDIA GPU Operator enables Kubernetes administrators to manage GPU nodes like CPU nodes
within the cluster by relying on a standard OS image for both node types. The GPU Operator then
provisions any software components needed for the GPUs. Verson 1.9.1 or later is required.

1. Download the NVIDIA GPU Operator, then run the following command:

helm repo add nvaie https://helm.ngc.nvidia.com/nvaie \
 --username='$oauthtoken' --password='<password>' \
 && helm repo update

https://mldm.pachyderm.com/latest/build-dags/project-operations/
https://mldm.pachyderm.com/latest/build-dags/pipeline-operations/
https://mldm.pachyderm.com/latest/build-dags/branch-operations/
https://mldm.pachyderm.com/latest/build-dags/datum-operations/
https://mldm.pachyderm.com/latest/build-dags/provenance-operations/
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://min.io/
https://www.delltechnologies.com/en-us/storage/ecs/index.htm
https://www.swiftstack.com/
https://docs.pachyderm.com/latest/get-started/first-time-setup
https://docs.pachyderm.com/latest/set-up/pachctl-autocomplete
https://mldm.pachyderm.com/latest/set-up/cloud-deploy/

2. Install:

helm install --wait gpu-operator nvaie/gpu-operator-<M>-<m> -n gpu-operator \
 --set driver.repository=nvcr.io/nvidia \
 --set driver.image=driver \
 --set driver.version=<driver-version> \
 --set driver.licensingConfig.configMapName=""

For a complete installation guide, see the official NVIDIA GPU Operator installation instructions.

2. Install MLDM via Helm

You can obtain MLDM and its updates via Helm.

helm repo add pachyderm https://helm.pachyderm.com
helm repo update

3. Create Enterprise Key Secret

Before we begin configuring our Helm values.yaml file, let’s create a secret key for our enterprise
license. This will allow us to enable enterprise-only features like authentication/authorization.

There are a few ways to do this, but the easiest would be to:

1. Create a file named pachyderm-enterprise-key.json.
2. Copy & paste the following template, adding your license key:

{
 "kind": "Secret",
 "apiVersion": "v1",
 "metadata": {
 "name": "pachyderm-enterprise-key",
 "creationTimestamp": null
 },
 "data": {
 "enterprise-license-key": "<replace-with-key>"
 }
}

Then, you can add the secret to PachCTL:

pachctl create secret -f pachyderm-enterprise-key.json

We’ll use the secret’s name, pachyderm-enterprise-key, later in our values.yaml configuration file.

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-operator-nvaie.html#installing-gpu-operator-with-the-nvidia-datacenter-driver

4. Configure Helm Values

The Helm values.yaml file defines your deployment, storage, and enterprise feature settings. You can
view and copy a full example Helm chart from GitHub or ArtifactHub for reference when configuring
your Helm Chart Values (HCVs).

If you already have MLDM deployed and wish to see the already existing user-provided values, you can
run the following:

helm get values pachyderm > values.yaml

Add Storage Classes to Helm Values

Update your Helm values file to include the storage classes you are going to use:

etcd:
 storageClass: MyStorageClass
 size: 10Gi
postgresql:
 persistence:
 storageClass: MyStorageClass
 size: 10Gi

Size & Configure Object Store

1. Determine the endpoint of your object store, for example minio-server:9000.
2. Choose a unique name for the bucket you will dedicate to MLDM.
3. Create a new access key ID and secret key for MLDM to use when accessing the object store.
4. Update the MLDM Helm values file with the endpoint, bucket name, access key ID, and secret

key.

pachd:
 storage:
 backend: minio
 minio:
 endpoint: minio-server:9000
 bucket: pachyderm-bucket
 id: pachyderm-access-key
 secret: pachyderm-secret-key
 secure: false

Add Enterprise License Key Secret Name

Add the secret name created in a previous step to your Helm values.yaml file at the following location:

pachd:
 enterpriseLicenseKeySecretName: "pachyderm-enterprise-key"

https://github.com/pachyderm/pachyderm/blob/2.7.x/etc/helm/pachyderm/values.yaml
https://artifacthub.io/packages/helm/pachyderm/pachyderm
https://mldm.pachyderm.com/latest/manage/helm-values/

Configure Authentication & Authorization

To set up Authentication, you must have an active Enterprise License and create a corresponding key
secret (completed in previous sections). Then you must set up both TLS and an OIDC connector such as
Auth0 or Okta. Once set up, you are ready to add the OIDC configuration to your Helm values.yaml file.
The following is an Auth0 example:

oidc:
 upstreamIDPs:
 - type: oidc
 id: auth0
 name: Auth0
 config:
 issuer: https://<auth0.app.domain.url>/
 clientID: FbTzaVdFCB9TbX07pXqxBwofuEOux004
 clientSecret: 1kbxtx22DLGSULrjJgV-TaaUs1qPLK5yTOsrmwwVNXP9U
 redirectURI: https://<proxy.host.value.com>/dex/callback
 insecureEnableGroups: true
 insecureSkipEmailVerified: true
 insecureSkipIssuerCallbackDomainCheck: false

After deploying MLDM, you can log in as the root user and begin to add users to certain resource types
such as Projects and Repos.

pachctl auth set project <project-name> <role-name> user:<username@email.com>

5. Deploy

Run the following command:

helm install pachyderm -f values.yaml pachyderm/pachyderm --version
<your_chart_version>

You can check the status of your deployment by running the following kubectl command:

Kubectl get pods

6. Connect & Login

After the pachd pod is up and ready, you can connect, check the version, and log in using the following
PachCTL commands:

pachctl connect grpcs://<your-proxy.host-value>:443
pachctl version
pachctl auth login

https://mldm.pachyderm.com/latest/set-up/connectors/
https://mldm.pachyderm.com/latest/set-up/tls/
https://mldm.pachyderm.com/latest/set-up/connectors/auth0/
https://mldm.pachyderm.com/latest/set-up/connectors/okta/
https://mldm.pachyderm.com/latest/manage/login/

7. Build a GPU-enabled Pipeline

Now you can define pipeline specifications and deploy pipelines to your MLDM cluster. The following
example deploys a GPU-enabled pipeline from our Market Sentiment Analysis example in GitHub. You
can review the relevant PPS sections in more detail at the Resource Limits and Resource Requests
sections of our documentation.

1. Create an example.json file and populate it with the following:

{
 "pipeline": {
 "name": "train_model"
 },
 "description": "Fine tune a BERT model for sentiment analysis on financial
data.",
 "input": {
 "cross": [
 {
 "pfs": {
 "repo": "dataset",
 "glob": "/"
 }
 },
 {
 "pfs": {
 "repo": "language_model",
 "glob": "/"
 }
 }
]
 },
 "transform": {
 "cmd": [
 "python", "finbert_training.py", "--lm_path", "/pfs/language_model/",
"--cl_path", "/pfs/out", "--cl_data_path", "/pfs/dataset/"
],
 "image": "pachyderm/market_sentiment:dev0.25"
 },
 "resourceLimits": {
 "gpu": {
 "type": "nvidia.com/gpu",
 "number": 1
 }
 },
 "resourceRequests": {
 "memory": "4G",
 "cpu": 1
 }
}

2. Run pachctl create pipeline –f example.json.
3. List your pipelines in the terminal using pachctl list pipelines or view the Console.

https://mldm.pachyderm.com/latest/build-dags/pipeline-spec/
https://github.com/pachyderm/examples/tree/master/market-sentiment
https://mldm.pachyderm.com/latest/build-dags/pipeline-spec/resource-limits/
https://mldm.pachyderm.com/latest/build-dags/pipeline-spec/resource-request/
https://mldm.pachyderm.com/latest/learn/console-guide/

	Contents
	Terms and Definitions
	Introduction to MLDM
	Key Features
	Basic Concepts
	How MLDM Works
	How to Interact with MLDM

	Before You Start
	Install on Kubernetes
	1. Install NVIDIA GPU Operator via Helm
	2. Install MLDM via Helm
	3. Create Enterprise Key Secret
	4. Configure Helm Values
	Add Storage Classes to Helm Values
	Size & Configure Object Store
	Add Enterprise License Key Secret Name
	Configure Authentication & Authorization

	5. Deploy
	6. Connect & Login
	7. Build a GPU-enabled Pipeline

