
UbiOps & NVIDIA AI Enterprise
Deployment Guide

Version 0.9.2 - October 2023



Table of contents

Table of contents 1
1. Introduction to UbiOps 2
2. Offering & High level architecture 4
3. Installing UbiOps 5

3.1. Kubernetes Cluster 6
3.2. Container registry 6
3.3. PostgreSQL database 6
3.4. MongoDB database 7
3.5. Redis 7
3.6. Object storage 7
3.7. Workspace (optional) 8

4. Configuring UbiOps with NVIDIA GPUs 9
4.1. Kubernetes nodepool 9
4.2. UbiOps configuration 13
4.3. Adding NVIDIA AI Enterprise environments to UbiOps 16

5. Using NVIDIA GPUs for AI workloads in UbiOps 19
5.1 Training 19
5.2 Inference 22

6. Examples for using NVIDIA AI Enterprise SDKs 24
6.1. Training a Tensorflow model on UbiOps 26
6.2. Accelerate data processing with NVIDIA Rapids 34
6.3. Running an NVIDIA Triton Inference Server 45

7. More information and resources 49

1



1.Introduction to UbiOps

UbiOps is developed for data scientists and teams who are looking for an easy, flexible and
production-ready way to:

● Deploy, train, and run your own Machine Learning and data science code
● Deploy off-the-shelf LLM & GenAI models
● Run helper functions and other data processing tasks

UbiOps takes care of containerization of user code, deploying it as a microservice with its own
API endpoint, as well as request handling and automatic scaling. There are also advanced
features for creating data pipelines, version management, job scheduling, monitoring, security
and governance. UbiOps has options for deploying AI & ML workloads in both single cloud as
well as multi- & hybrid cloud environments.

The UbiOps MLOps platform makes extensive use of NVIDIA technology in the following ways:

● Various NVIDIA GPUs are supported for executing code on the UbiOps platform, e.g.
NVIDIA T4, NVIDIA A100 and others
https://ubiops.com/docs/scaling-resource-settings/#instance-type. This includes MIG
GPUs and VMs leveraging multiple GPUs. UbiOps can run training and inference on
NVIDIA GPUs in various cloud provider environments from one interface. The GPUs can
be sourced from different hyperscalers such as Amazon Web Services, Azure, and
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Google Cloud Platform. Also supported are European Cloud providers such as Bytesnet,
Escher Cloud and Intermax.

● UbiOps can orchestrate containerized code directly on VMs with the UbiOps Compute
Platform by using nvidia-docker and NVIDIA GPU drivers. Additionally, it’s possible to
orchestrate containerized code utilizing NVIDIA GPUs on Kubernetes Engine. UbiOps
supports Kubernetes installations with a special OS image with NVIDIA GPU ready
container runtimes and NVIDIA drivers pre-installed on the nodes, and installations
where an NVIDIA GPU operator installs the needed software after boot.

● UbiOps provides a set of environments https://ubiops.com/docs/environments/ which
are container images on which UbiOps client software is preinstalled to connect to the
UbiOps API. This includes regular (CUDA) images such as ubuntu:22.04 or
nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu22.04 and NVIDIA AI Enterprise images such
as nvcr.io/nvaie/tensorflow-3-1:23.03-tf2-nvaie-3.1-py3. It is possible for UbiOps
administrators to make custom environments available on demand using a specific
docker build. Alternatively, users can create their own environments with any custom
dependencies, or CUDA versions, by using the UbiOps build system (see
https://ubiops.com/docs/howto/howto-install-custom-cuda/). Users only need to worry
about writing and uploading their code.

● The UbiOps team has extensive experience with machine learning applications including
inference and training at scale. Support is available to ensure a high level of service for
AI in production.
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2.Offering & High level architecture
UbiOps has different installation options. UbiOps is available as a fully-managed SaaS solution
on https://app.ubiops.com and it can also be installed as a private (single-tenant) solution or on
your own cloud environment or local hardware.

Options for installation include a ‘full installation’ of UbiOps or a more lightweight ‘nodepool
installation’. The ‘nodepool installation’ means that only the compute environment resides at the
customer while the UbiOps control plane is hosted and managed by UbiOps in the UbiOps cloud
environment. This allows users to either make use of their own cloud resources, or, for instance,
to keep their computing close to their storage.

A high level overview of the UbiOps platform is shown in the visual below. As seen in the visual,
the UbiOps control plane offers several MLOps and model management capabilities. On the
infrastructure level, the control plane can interface with multiple compute environments to
orchestrate inference and training workloads. More details on the functionality of UbiOps can be
found in its documentation on https://ubiops.com/docs/.

Figure 1: A high-level architecture of how the UbiOps core cluster interacts with external users and
applications, and orchestrates workloads across different compute (GPU) environments.

Note: This deployment guide will focus on a Kubernetes-based compute environment. UbiOps
offers an alternative installation possibility which makes use of the proprietary UbiOps
Compute Platform. In this setup, UbiOps can also connect with UbiOps clients on local
hardware, or interface with the API of a Cloud Service Provider for managing compute
resources and orchestrating workloads.
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3.Installing UbiOps
A high level overview of the infrastructure used by UbiOps can be found in the figure below. As
can be seen, UbiOps consists of a set of microservices that run on Kubernetes and are
accessible via a browser basedWebApp, the UbiOps platform API and the deployment Requests
Page. Additional services are used to store state, and common infrastructure such as load
balancers, DNS, VPC are needed as well.

Figure 2: A high-level architecture of the UbiOps core cluster

UbiOps can be installed on infrastructure provisioned using major and smaller cloud providers,
in private data centers and in development environments. Detailed steps can be found in
https://installation-guide.docs.ubiops.com/latest/ for the installation of UbiOps on major cloud
providers such as Azure, Amazon Web Services (AWS) and Google Cloud Platform (GCP).

Installation on smaller cloud providers, private data centers and development environments is
possible as well. Please contact info@ubiops.com for more information.

A brief description of the major components of the UbiOps installation is provided below.
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3.1. Kubernetes Cluster

A UbiOps installation needs a Kubernetes cluster. The cluster needs to be set up before starting
the UbiOps installation. The following versions are supported in the most recent versions of
UbiOps: 1.22, 1.23, 1.24, 1.25, 1.26. Kubernetes versions outside this range may be supported
but have not been tested (yet).

The Kubernetes cluster is used to run services like the UbiOps API and WebApp, as well as
internal services.

3.2. Container registry

UbiOps requires access to a container registry, both for the Docker images of the UbiOps
services as for storage of Docker images of deployments created in UbiOps. Each of the UbiOps
Docker images needs to be copied to this container registry.

Each of the major Cloud Service Providers has their own container registry service. Alternatively
it’s possible to set up a Docker registry manually.

Please make sure the registry is secured using the TLS security protocol, and that an account is
available with the rights to create repositories, push and pull images.

3.3. PostgreSQL database

UbiOps requires a PostgreSQL database to store all application related information. We
recommend PostgreSQL 13, although UbiOps should work with earlier versions up to 9.6 as well.
At least 30 GB storage is required.

Most of the cloud providers offer a managed PostgreSQL service. Alternatively, it’s possible to
install and manage PostgreSQL manually on a virtual machine.

Recommended is to configure daily or hourly backups with a retention time of at least a couple
of days for the PostgreSQL database. High-availability can be considered as well (in addition to
the backups).

Please make sure to have an administrative user available that can create databases and users.
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3.4. MongoDB database

UbiOps requires a MongoDB database to store logs and metrics. Recommended is the latest
MongoDB 4 version, with at least 1 vCPU and 2 GB of memory.

It’s recommended to install MongoDB on a virtual machine manually, as no cloud provider offers
MongoDB as a managed service. Alternatively a service such as MongoDB Atlas can be
considered.

Recommended is to configure daily or hourly backups with a retention time of at least a couple
of days for the MongoDB database.

Please make sure to have an administrative user available that can create one database and
create users.

3.5. Redis

UbiOps requires a Redis instance, we recommend version 4.0 or higher. It does not need to
have persistent storage.

Most of the cloud providers provide a managed Redis service such as AWS, Azure, and Google.
A small instance with 1 GB memory is sufficient for a standard installation.

Alternatively, it’s possible to install Redis manually on a virtual machine, or even install it in the
Kubernetes cluster using a redis helm chart.

3.6. Object storage

UbiOps requires access to a high-performance object storage bucket to store request data and
files.

Most of the cloud providers provide a managed blob storage service that is supported by
UbiOps (Google Cloud Storage, AWS S3, Azure Blob Storage).

Alternatively, it’s possible to set up MinIO or Openstack swift on a virtual machine, or even
install it in the Kubernetes cluster. The access should be secured using TLS.

Please make sure to have a user available that can create a bucket and has full access to this
bucket.
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If you want to use the file browser in the UbiOps WebApp to manage files stored in object
storage, you will need to configure the object storage to return CORS headers for the URL of
the WebApp. Please refer to the documentation of your object storage provider for instructions.

3.7. Workspace (optional)

Regarding the installation process, it is recommended to perform and manage a UbiOps
installation from one machine or location, such as a small virtual machine acting as a jumphost.
This server will store the UbiOps infrastructure code and configuration, and all installation
commands are issued from here.

Alternatively this can be done from a local system, possibly shared with team members using
centralized storage, but that can be less convenient and less secure.
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4. Configuring UbiOps with NVIDIA GPUs

In this chapter will be explained how to enable NVIDIA GPUs on UbiOps.

4.1. Kubernetes nodepool
UbiOps supports deployments and training jobs to run on a GPU. This feature can be enabled
by adding GPU node pool(s) to a Kubernetes cluster. It is possible to add GPU node pools after
setting up UbiOps.

A node pool needs to be created with the correct amount of resources to support the
deployment instance types that will be used. The nodes in the node pool need to be slightly
larger than the maximum size of deployments in UbiOps, to compensate for Kubernetes
overhead.

For example, to support deployment instance types with 4 vCPU, 16 GiB RAM and 1 GPU,
nodes with 5 vCPU and 20 GB RAM and 1 GPU are recommended. Or alternatively, larger
nodes with 9 vCPU, 36 GiB RAM and 2 GPUs - these can support two deployments of the said
instance type.

The Kubernetes nodes should have permissions to pull and push images from the container
registry, where user code is stored. How this is configured depends on the Cloud provider, but is
usually done by giving permissions to the Kubernetes service account. Alternatively, it’s possible
to configure registry credentials in the UbiOps Administration Portal.

4.1.1. GPU nodepool

The node pool for the GPU deployments should have the labels:

accelerator: nvidia-tesla-t4 # the type of GPU that is used in this
node pool
dedicated: deployments
nvidia.com/gpu: present
node_pool_id: <a randomly generated uuid for the nodepool>
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Unset

Unset

Unset

And the taint:

NoSchedule dedicated=deployments
NoSchedule nvidia.com/gpu=present

The nodepool id that has been configured will be used when a UbiOps administrator is defining
the nodepool in UbiOps later.

The Kubernetes nodes need to have NVIDIA drivers installed and an NVIDIA device plugin
installed to discover GPUs. Please follow the steps provided by the cloud provider, e.g. Google
Cloud Services or install the NVIDIA GPU operator https://github.com/NVIDIA/gpu-operator.

4.1.2. Multi-instance GPU (MIG) nodepool

UbiOps supports running on multi-instance GPUs (e.g., NVIDIA Ampere series). In this situation
each deployment version will be allocated a slice of a GPU instead of the entire GPU.
Depending on the infrastructure provider GPU slices need to be configured in advance or after
creating the nodepool in Kubernetes.

It is required to configure a nodepool with the labels matching the MIG configuration. For
example, in the case of partition of 1g5 configuration the node pool should have the labels:

accelerator: nvidia-a100-1g5 # the type of GPU that is used in this
node pool
dedicated: deployments
nvidia.com/gpu: present
node_pool_id: <a randomly generated uuid for the nodepool>

And the taint:

NoSchedule dedicated=deployments
NoSchedule nvidia.com/gpu=present
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Unset

Unset

Unset

The nodepool id that a user has given for the label will be used when they are defining the
nodepool in UbiOps later.

Depending on the infrastructure provider additional labels are required to configure the MIG
slices. For example, when using the NVIDIA GPU operator the following node label is needed to
configure MIG slices.

nvidia.com/mig.config=all-1g.5gb

4.1.3. Multi-GPU nodepool

Multi-GPU nodepools (e.g., 2x NVIDIA A100) can accommodate larger training jobs, and are
also supported on UbiOps. In this situation each deployment version will be allocated multiple
GPUs.

accelerator: nvidia-a100 # the type of GPU that is used in this node
pool
dedicated: deployments
nvidia.com/gpu: present
node_pool_id: <a randomly generated uuid for the nodepool>

And the taint:

NoSchedule dedicated=deployments
NoSchedule nvidia.com/gpu=present

The nodepool id that a user has given for the label will be used when they are defining the
nodepool in the UbiOps administration portal, in a later stage.
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4.1.4. Testing

It’s recommended to test the Kubernetes GPU nodepool before connecting it to UbiOps with the
following workload (or equivalent)

apiVersion: v1
kind: Pod
metadata:
name: cuda-vector-add

spec:
restartPolicy: OnFailure
containers:
- name: cuda-vector-add
image:

"nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda11.7.1-ubuntu20.04"
resources:
limits:
cpu: 4
memory: 16Gi
nvidia.com/gpu: 1 # requesting 1 GPU

requests:
cpu: 4
memory: 16Gi
nvidia.com/gpu: 1 # requesting 1 GPU

nodeSelector:
dedicated: deployments
node_pool_id: <the previously used uuid>

tolerations:
- key: "dedicated"
value: "deployments"
operator: "Equal"
effect: "NoSchedule"

- key: "nvidia.com/gpu"
value: "present"
operator: "Equal"
effect: "NoSchedule"
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4.2. UbiOps configuration

To allow UbiOps connecting to the Kubernetes nodepool, create a service account in the cluster.

kubectl apply -f - <<EOF
apiVersion: v1
kind: ServiceAccount
metadata:
name: ubiops-service-account
namespace: default
EOF

This service account needs access to the entire cluster. Assign the cluster-admin role for
the user:

kubectl apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: ubiops-cluster-admin
namespace: kube-system
subjects:
- kind: ServiceAccount
name: ubiops-service-account
namespace: default
roleRef:
kind: ClusterRole
name: cluster-admin
apiGroup: rbac.authorization.k8s.io
EOF
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Create a long-lived token for the serviceaccount

kubectl apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
name: ubiops-secret
annotations:
kubernetes.io/service-account.name: ubiops-service-account

type: kubernetes.io/service-account-token
EOF

Get the token:

kubectl describe secret/ubiops-secret

We also need the certificate authority data for the cluster. Run the following command and get
the field ca.crt:

kubectl get secret <SECRET_NAME> -o yaml

Now a nodepool can be added to UbiOps from the UbiOps Administration Portal. Navigate to:
https://api.domain.com/v2.1/admin and login with a superuser account. In the
Core/Clusters section, you can click on Add Cluster. The following fields are required to
create a cluster:

● name: Name of the component
● capacity: Number of deployment instances that can be deployed on the component
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● master_endpoint: Endpoint of the cluster
● certificate_authority_data: CA certificate for the Kubernetes master
● credentials: Required credentials to access the Kubernetes cluster. The service

account token that was previously generated in this section should be provided in this
field. Give a dictionary with a key token and value the token itself.

After adding cluster(s), a nodepool in the cluster needs to be added. Navigate to the
Nodepools section. The following fields are required to create a nodepool:

● id: UUID of the nodepool. Use the nodepool id that you have provided to the nodepool
in Kubernetes.

● name: Name of the nodepool
● cluster: Name of the cluster where the nodepool will be created
● Add resources of the following types:

○ cpu_standard: Amount of CPU available in the nodepool
○ memory_standard: Amount of memory available in the nodepool
○ gpu_standard: Amount of capacity of GPU available in the nodepool. It is

possible to update this field later when
○ storage_standard: Amount of ephemeral storage that can be used on the

nodes by containerized workloads. It’s advised to keep 30GB of disk capacity
free.
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4.3. Adding NVIDIA AI Enterprise environments to UbiOps
By default, UbiOps provides multiple base environments with different versions of python and
CUDA pre-installed. Base environments based on NVIDIA AI Enterprise containers can be
configured in the UbiOps administration portal which is located at
https://api.ubiops.[domain].com/v2.1/admin.

In this section we will explain how to add an environment based on
nvcr.io/nvaie/tensorflow-3-1:23.03-tf2-nvaie-3.1-py3 image to UbiOps.

4.3.1. Creating a UbiOps base environment
A UbiOps base environment consists of a regular container image with UbiOps ‘deployment
instance’ code added to it. The installed UbiOps ‘deployment instance’ code handles things like
code download, requests, log and metric collection and acts as an interface to the UbiOps API.
Administrators can create environments using a regular docker build process. For example, it’s
possible to create an environment based on the NVIDIA Enterprise image
nvcr.io/nvaie/tensorflow-3-1:23.03-tf2-nvaie-3.1-py3 using the following docker file.

FROM nvcr.io/nvaie/tensorflow-3-1:23.03-tf2-nvaie-3.1-py3
…
# Setup a venv for the deployment instance with python 3.10
RUN python3.10 -m venv /var/deployment_instance/venv/

# Install deployment instance requirements
RUN . /var/deployment_instance/venv/bin/activate && pip install -U pip
&& pip install -r /var/deployment_instance/deployment/requirements.txt

# Install deployment instance source files under the deployment_instance user
COPY --chown=deployment:deployment main.py
/var/deployment_instance/deployment/main.py
COPY --chown=deployment:deployment deployment_process.py
/var/deployment_instance/deployment/deployment_process.py
COPY --chown=deployment:deployment config/config.yaml-docker
/var/deployment_instance/deployment/config/config.yaml
COPY --chown=deployment:deployment controller
/var/deployment_instance/deployment/controller/
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COPY --chown=deployment:deployment deployment_interface
/var/deployment_instance/deployment/deployment_interface/
COPY --chown=deployment:deployment utilities
/var/deployment_instance/deployment/utilities/
…
CMD ["python3", "-u", "/var/deployment_instance/deployment/main.py"]

The resulting image with UbiOps dependencies packaged into it we call an environment in
UbiOps. The image should be pushed to a container registry.

4.3.2. Making the environment available in UbiOps

The resulting environment should be added to UbiOps in the administration portal.
The following fields are required to create an environment:

● name: The short name of the environment
● Display Name: The name of the environment that will be displayed in the UbiOps UI
● language: The coding language for code used in this environment
● Image repository: The location of the container image of the environment
● Image tag: The version tag of the container image of the environment
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4.3.3. Using the environment in UbiOps
For each deployment version UbiOps users can configure which environment should be used to
execute code in. For example it’s possible for a model written for tensorflow to run in an NVIDIA
enterprise environment by selecting “NVIDIA enterprise 3.1 Tensorflow 2” environment.

Examples will be provided in the next chapters.
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5. Using NVIDIA GPUs for AI workloads in UbiOps
In the UbiOps documentation there is an extensive set of examples on how to utilize NVIDIA
GPUs, see e.g. https://ubiops.com/docs/deployments/gpu-deployments/

End-users of the UbiOps platform can easily deploy workloads on GPUs. Specifically they can
run inferencing jobs using deployments, or training runs using experiments. Generally, anything
that runs on Python, can run on UbiOps.

A UbiOps workload contains three layers:

1. The instance type. This specifies the resource requests of the workload, and includes a
number of vCPU cores, a disk size, memory, and/or a GPU card.

2. An environment. This specifies the base container image with UbiOps client software
installed and is used to execute the customers code. Users can install additional OS
packages and pip packages in an environment.

3. A code layer, with optionally additional files, such as model artifacts or look-up tables.
The layer includes all relevant code and is downloaded to the environment during
initialization of an instance.The user can specify code that runs when initiating a new
instance of the deployment.

For training workloads, the code layer is different with each training run, and is part of
the input of a training job that runs on the specified environment. This allows a user to
experiment with different scripts more iteratively.

For inference workloads, the code layer is uploaded once and is then fixed, unless
explicitly rebuilt.

We will now provide a high-level description of how users can deploy a training algorithm on top
of NVIDIA AI Enterprise environments. Afterwards, we provide a similar description of how
users can deploy a GPU-powered inference workload on such an environment.

5.1 Training

Let’s say that a user wants to run a training job with a UbiOps environment based on an NVIDIA
enterprise 3.1 tensorflow 2 container image and make use of an NVIDIA Tesla T4 to speed up
his training time. By making use of this environment the user is able to make use of all packages
that have been pre-installed in this container. The user needs to write code in the format that
UbiOps understands, see https://ubiops.com/docs/training/ . For a training run, this means
transforming his training script into a `train` method, e.g.:
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Python

import module x,y,z

def train(training_data, parameters, context):
# Training code

To deploy this script, he can make use of the `Training` functionality at UbiOps. Step one is to
create an experiment and define the instance type and the code environment, on which all
training scripts in this experiment will run. In this example, they will select a deployment
instance type with a NVIDIA Tesla T4 GPU added to it, and select `NVIDIA enterprise 3.1
tensorflow 2` as the environment.

The training run is then a serverless set-up, which can receive instructions to initiate training a
run. Input fields are the training script, (a reference to) training data and a set of
(hyper)parameters. This allows a user to quickly initiate multiple training runs, e.g. with different
input (hyper)parameters, or a different training script.

Multiple training runs can run in parallel. The scaling of all required compute happens in the
background. The experiment overview pages allows users to keep track of all running training
jobs.
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During a training run, they can inspect logs to see if their job runs as planned.
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5.2 Inference
Similarly, inference workloads are supported as well. UbiOps takes care of the orchestration and
scaling of the model based on the configured scaling parameters and the amount of traffic
hitting the model endpoint. Instead of defining one step, as we did in a training job, you can now
define two steps. One that runs when a model is initialized up, and one that runs when it
receives a request (input data).

class Deployment:

def __init__(self):
# Load model into memory, open up connections to databases

def request(self, data):
# Process data
return {"output":123}

Again, we can select the instance type and a code environment in which the deployment code
will run. With deployments, an end-user has more control over compute settings. They can
specify a minimum and maximum number of active instances, an idle time of these instances,
and assign a static egress IP.

Below we show an example for a deployment that hosts a Stable Diffusion model, with two
versions. Both versions run the same code. In the initialization of an instance, a Stable Diffusion
model is loaded from an object storage into memory. During request handling, the model is used
to generate an image from an input prompt. One version runs on an instance type with access to
an NVIDIA T4 Tesla GPU, where the other version has access to an NVIDIA Ampere A100 (40GB)
GPU card. Because of the separation of code (environment) from the instance type, solutions
can easily be lifted and shifted to different instance types.
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6. Examples for using NVIDIA AI Enterprise SDKs

This chapter shows several examples on how to use the NVIDIA Enterprise SDKs in UbiOps for
model training, deployment and inference. The examples are based on UbiOps tutorials and
make use of the UbiOps Python Client to interface with the UbiOps API.

The code blocks in the examples are intended to run from a Jupyter Notebook environment. You
can also find these examples in the UbiOps documentation.

6.1. Training a Tensorflow model on UbiOps
This example is based on the following articles:
https://ubiops.com/docs/ubiops_tutorials/tensorflow-training/tensorflow-training/
https://ubiops.com/training-ml-models-on-ubiops/

In this example, we will show how to run a training job for a Tensorflow model on the UbiOps
platform.

We will define and create a UbiOps training script. Using the UbiOps Python client we will create
an experiment, where we specify the container in which the code will run and which we can
analyze and track our results.

We will first show you how to set project variables and to initialize the UbiOps API Client, setting
up a connection to your project.

1) Set project variables and initialize the UbiOps API Client

First, make sure you create an API token with project editor permissions in your UbiOps project
and paste it below. Also fill in your corresponding UbiOps project name.

You can install the UbiOps Python Client using

pip install --upgrade ubiops

For more information how to authenticate with the API using the Python Client, please see
https://ubiops.com/docs/interacting/client-libraries/
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Python

from datetime import datetime
dt = datetime.now()
import yaml
import os
import ubiops

API_TOKEN = 'Token ' # Paste your API token here. Don't forget the `Token`
prefix
PROJECT_NAME = '' # Fill in the corresponding UbiOps project name

configuration = ubiops.Configuration(host="https://api.ubiops.com/v2.1")
configuration.api_key['Authorization'] = API_TOKEN

api_client = ubiops.ApiClient(configuration)
core_instance = ubiops.CoreApi(api_client=api_client)
training_instance = ubiops.Training(api_client=api_client)
print(core_instance.service_status())

2) Initialize the UbiOps client library with the API token

Now we import the UbiOps Python client and authenticate with the API.

import ubiops

configuration = ubiops.Configuration(host="https://api.ubiops.com/v2.1")
configuration.api_key['Authorization'] = API_TOKEN

client = ubiops.ApiClient(configuration)
api = ubiops.CoreApi(client)
api.service_status()
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6.1.1. About the training code

The training function we will deploy expects a path to a zipped training data file, the number of
epochs, and the batch_size as input. As output it will give the trained model artifact as well as
the final loss and accuracy for the training job. - The training code and data is based on one of
the Tensorflow tutorials for training a model on the 'flowers dataset'.

Source: https://www.tensorflow.org/tutorials/load_data/images

The corresponding URL for the training data archive is:
https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz

Training code in- and output variables

Fields (type) Keys of dictionary

Input fields training_data (file)

parameters (dict) epochs (integer)

batch_size (integer)

Output fields artifact (file)

metrics (dict) accuracy (float)

loss (float)

loss_history (list[float])

acc_history (list[float])

After authenticating with the API using the UbiOps Python Client. Set-up a training instance in
case you have not done this yet in your project. This action will create a base training
deployment that is used to host training experiments.

training_instance = ubiops.Training(api_client=api_client)
try:
training_instance.initialize(project_name=PROJECT_NAME)

except ubiops.exceptions.ApiException as e:
print(f"The training feature may already have been initialized in your

project:\n{e}")
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6.1.2. Create an experiment

The basis for model training in UbiOps is an 'Experiment'. An experiment has a fixed code
environment and compute (instance) definition, but it can hold many different 'Runs'.

You can create an experiment in the WebApp or use the Client Library, as we're here. When
creating the environment, we can specify the instance type and the code environment. Our
training code needs an environment to run in, with a specific Python language version, and some
dependencies, like Tensorflow. We can use the NVIDIA AI Enterprise 3.1 TensorFlow base
environment for this, which is the specialized NVIDIA container for the TensorFlow library. This
base environment is using this NVIDIA AI Enterprise container.

This bucket will be used to store your training jobs and any model callbacks. In case you want to
continue without creating a bucket, you can use the default bucket that is always present inside
your account.

EXPERIMENT_NAME = 'training-experiment-demo' # str
BUCKET_NAME = 'default'

try:
experiment = training_instance.experiments_create(
project_name=PROJECT_NAME,
data=ubiops.ExperimentCreate(
instance_type='16384mb_t4_nvaie',
description='Train test experiment',
name=EXPERIMENT_NAME,
environment='nvaie3-1-ubuntu23-03-python3-8-tensorflow2',
default_bucket= BUCKET_NAME

)
)

except ubiops.exceptions.ApiException as e:
print(e)
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6.1.3. Load the training data

We will download the publicly available flower photos dataset. We will train our model on this
file.

import urllib.request

url =
"https://storage.googleapis.com/download.tensorflow.org/example_images/flower_p
hotos.tgz"
training_data = "flower_photos.tgz"

urllib.request.urlretrieve(url, training_data)

print(f"File downloaded successfully to '{training_data}'.")

(Optional) Extract the zip-file, to inspect its content. The tar file will be applied directly to the
training job, so this step is not required.

import tarfile

file_dir = "flower_photos"
with tarfile.open(training_data, 'r:gz') as tar:
path = tar.extractall("./")

6.1.4. Define and start a training run

A training job in UbiOps is called a run. To run any Python code on UbiOps, we need to create a
file named train.py and include our training code here. This code will execute as a single 'Run' as
part of an 'Experiment' and uses the code environment and instance type (hardware) as defined
with the experiment as shown before. Let’s take a look at the training script.

The UbiOps train.py structure is quite simple. It only requires a train() function, with input
parameters training_data (a file path to your training data) and parameters(a dictionary that
contains parameters of your choice). If we upload this training code, along with the
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training_data file and some values for our input parameters, a training run is initiated! You can
easily execute multiple training runs with different hyperparameters, or with slightly altered
code. Each training run can either reuse the same code with different parameters, or contain a
different version of the train.py file.

RUN_NAME = 'training-run'
RUN_SCRIPT = f'{RUN_NAME}.py'

%%writefile {RUN_SCRIPT}
import logging
import pathlib
import subprocess
import sys
import tarfile

import joblib
import tensorflow as tf

logger = logging.getLogger("TrainingInformation")

def train(training_data, parameters, context):
"""All code inside this function will run when a call to the deployment is

made."""
logger.info("Processing training run")
subprocess.check_call(args=[sys.executable, "-m", "pip", "list"])
subprocess.check_call(args=["nvcc", "--version"])

img_height = 180
img_width = 180
batch_size = int(parameters["batch_size"]) # Specify the batch size
nr_epochs = int(parameters["nr_epochs"]) # Specify the number of epochs

# Load the training data
extract_dir = "flower_photos"

with tarfile.open(training_data, "r:gz") as tar:
tar.extractall("./")

data_dir = pathlib.Path(extract_dir)
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train_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size,

)

val_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size,

)

class_names = train_ds.class_names
print(class_names)

# Standardize the data
normalization_layer = tf.keras.layers.Rescaling(1.0 / 255)
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))

# Configure the dataset for performance
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

# Train the model
num_classes = 5

model = tf.keras.Sequential(
[

tf.keras.layers.Rescaling(1.0 / 255),
tf.keras.layers.Conv2D(32, 3, activation="relu"),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation="relu"),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation="relu"),
tf.keras.layers.MaxPooling2D(),
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tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(num_classes),

]
)

model.compile(
optimizer="adam",
loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy"],

)

history = model.fit(train_ds, validation_data=val_ds, epochs=nr_epochs)

eval_res = model.evaluate(val_ds)

# Return the trained model file and metrics
joblib.dump(model, "model.pkl")
fin_loss = eval_res[0]
fin_acc = eval_res[1]

print(history)
print(history.history)
return {

"artifact": "model.pkl",
"metrics": {

"fin_loss": fin_loss,
"fin_acc": fin_acc,
"loss_history": history.history["loss"],
"acc_history": history.history["accuracy"],

},
}

new_run = training_instance.experiment_runs_create(
project_name=PROJECT_NAME,
experiment_name=EXPERIMENT_NAME,
data=ubiops.ExperimentRunCreate(
name=RUN_NAME,
description='Trying out a first run run',
training_code= RUN_SCRIPT,
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training_data= training_data,
parameters={
'nr_epochs': 20, # example parameters
"batch_size" : 32

},
timeout=14400

)
)

We can easily finetune our training code and execute a new training code, and analyze the logs
along the way. When training a model it is important to keep track of the training progress and
convergence. We do this by looking at the training loss and accuracy metrics. Packages like
Tensorflow will print these for you continuously, and we’re able to track them in the logging page
of the UbiOps UI. If you notice a training job is not converging, you’re able to cancel the request
and try it again with different data or different parameters.

6.1.5. Evaluating the output

When the training runs are completed, the training run will provide you with the trained
parameter file, the final accuracy and loss. The parameter file is stored inside a UbiOps bucket.
You can easily navigate to this location from the training-run interface. You can compare
metrics of different training runs easily inside the Evaluation page of the Training tab, allowing
you to analyze which code or which hyperparameters worked best.
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6.2. Accelerate data processing with NVIDIA Rapids
This example is based on the following tutorial:
https://ubiops.com/docs/ubiops_tutorials/nvidia-rapids-benchmark/nvidia-rapids-benchmark-tuto
rial/

NVIDIA RAPIDS is a suite of open-source software libraries and APIs developed by NVIDIAthat
gives scientists and data analysts the ability to execute end-to-end data science and analytics
pipelines completely on GPUs. This makes many different data analytics and machine learning
workflows a lot faster. This tutorial will showcase how you can train a Linear Regression
classifier on a synthetic dataset, and optimize its runtime by using libraries that are part of the
NVIDIA RAPIDS suite. We will run the benchmark on the NVIDIA RAPIDS container.

Again, we are first going to define some project variables and initialize the UbiOps API Client

!pip install --upgrade ubiops

import ubiops

API_TOKEN = "Token ..." # TODO: Add your UbiOps token here
PROJECT_NAME = "" # TODO: Add your project name here

DEPLOYMENT_NAME = "nvidia-rapids-benchmark"
VERSION_NAME = "v1"

DEPLOYMENT_DIR = "deployment_package"
ENVIRONMENT_DIRECTORY_NAME = "environment_package"

configuration = ubiops.Configuration(host="https://api.ubiops.com/v2.1")
configuration.api_key['Authorization'] = API_TOKEN

api_client = ubiops.ApiClient(configuration)
core_instance = ubiops.CoreApi(api_client=api_client)
training_instance = ubiops.Training(api_client=api_client)

print(core_instance.service_status())

# Create a directory to store our deployment code
!mkdir {DEPLOYMENT_DIR}

Now our workspace is all set up, let's start creating our baseline model.
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6.2.1. Create a baseline model
In order to showcase the performance improvements by utilizing NVIDIA RAPIDS, we want to
have a baseline model to test against first. For this, we will create a simple Random Forest
classifier. We are going to use Scikit-Learn and Pandas for this.

We are creating the following functions for the baseline model:

● generate_dataset: Generate a random dataset for a certain amount of samples and
features

● convert_to_pandas: Convert our dataset to a Pandas Dataframe (useful for when we
start creating an NVIDIA RAPIDS accelerated model)

● train_lr: Train a Linear Regression model (with Scikit-Learn)
● make_predictions: Make model predictions
● calculate_mse: Calculate the Mean Square Error (MSE)

%%writefile {DEPLOYMENT_DIR}/baseline_model.py

import time

import pandas as pd
from sklearn.datasets import make_classification
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

class BaselineModel:
def __init__(self):
self.sklearn_lr = LinearRegression()

@staticmethod
def generate_dataset(n_samples, n_features=20):
x, y = make_classification(n_samples=n_samples, n_features=n_features)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
return x_train, x_test, y_train, y_test

@staticmethod
def convert_to_pandas(x_train, y_train, x_test):
pandas_x_train = pd.DataFrame(x_train)
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pandas_y_train = pd.Series(y_train)
pandas_x_test = pd.DataFrame(x_test)
return pandas_x_train, pandas_y_train, pandas_x_test

def train_lr(self, pandas_x_train, pandas_y_train):
start_time = time.time()
self.sklearn_lr.fit(pandas_x_train, pandas_y_train)
return time.time() - start_time

def make_predictions(self, pandas_x_test):
start_time = time.time()
sklearn_predictions = self.sklearn_lr.predict(pandas_x_test)
return sklearn_predictions, time.time() - start_time

@staticmethod
def calculate_mse(y_test, sklearn_predictions):
return mean_squared_error(y_test, sklearn_predictions)

6.2.3. Accelerate the model with NVIDIA RAPIDS

Now that we have our baseline model, we can accelerate this model by using the corresponding
NVIDIA RAPIDS equivalent libraries/functions. The table below lists the NVIDIA RAPIDS library
equivalents to the "standard" libraries.

Standard Library NVIDIA RAPIDS Equivalent

Pandas cuDF

Scikit-learn cuML

%%writefile {DEPLOYMENT_DIR}/rapids_model.py

import time
import cudf
from cuml.linear_model import LinearRegression
from cuml.metrics import mean_squared_error
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class RapidsModel:
def __init__(self):
self.cu_lr = LinearRegression()

@staticmethod
def convert_to_cudf(pandas_x_train, pandas_y_train, pandas_x_test):
cudf_x_train = cudf.DataFrame.from_pandas(pandas_x_train)
cudf_y_train = cudf.Series(pandas_y_train)
cudf_x_test = cudf.DataFrame.from_pandas(pandas_x_test)
return cudf_x_train, cudf_y_train, cudf_x_test

def make_predictions(self, cudf_x_test):
start_time = time.time()
cu_predictions = self.cu_lr.predict(cudf_x_test)
return cu_predictions, time.time() - start_time

def train_lr(self, cudf_x_train, cudf_y_train):
start_time = time.time()
self.cu_lr.fit(cudf_x_train, cudf_y_train)
return time.time() - start_time

@staticmethod
def calculate_mse(y_test, cu_predictions):
return mean_squared_error(y_test, cu_predictions)

As you can see in the code block above, the core is exactly the same as in the baseline model!
Some parameters are changed to give a better description, but all the function calls are entirely
the same. The only difference is the library from which it is imported. In the baseline model, this
is sklearn, in the accelerated model, it's cudf and cuml.

6.2.4. Implement the models into a UbiOps deployment

Now that we've written our code for a baseline model and a NVIDIA RAPIDS accelerated model,
we can integrate both into a UbiOps deployment. UbiOps deployment requires fixed in- and
outputs, as is outlined in the documentation.

We will use the following input/output structure:
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Input/Output Name Type Description

Input n_samples Integer Number of samples in the dataset

Input n_features Integer Number of features per sample

Output scikit-mse Double Precision Mean Squared Error using scikit-learn

Output cuml-mse Double Precision Mean Squared Error using cuML

Output scikit-train-time Double Precision Training time using scikit-learn

Output cuml-train-time Double Precision Training time using cuML

Let's integrate the models into the UbiOps deployment structure, with the inputs/outputs as
specified in the table above!

%%writefile {DEPLOYMENT_DIR}/deployment.py

import time

from baseline_model import BaselineModel
from rapids_model import RapidsModel

class Deployment:
def __init__(self):

self.baseline_model = None
self.rapids_model = None

def request(self, data):
n_samples = data.get("n_samples", 1000000)
n_features = data.get("n_features", 20)

self.baseline_model = BaselineModel()
self.rapids_model = RapidsModel()

start_time = time.time()
x_train, x_test, y_train, y_test =

self.baseline_model.generate_dataset(n_samples, n_features)
print("Dataset generation time: ", time.time() - start_time)

start_time = time.time()
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pandas_x_train, pandas_y_train, pandas_x_test =
self.baseline_model.convert_to_pandas(x_train, y_train, x_test)

print("Pandas conversion time: ", time.time() - start_time)

# Delete the dataframes to free up memory
del x_train, x_test, y_train

start_time = time.time()
cudf_x_train, cudf_y_train, cudf_x_test =

self.rapids_model.convert_to_cudf(
pandas_x_train,
pandas_y_train,
pandas_x_test

)
print("CuDF conversion time: ", time.time() - start_time)

sklearn_train_time = self.baseline_model.train_lr(
pandas_x_train,
pandas_y_train,

)
cu_train_time = self.rapids_model.train_lr(cudf_x_train, cudf_y_train)

sklearn_predictions, sklearn_prediction_time =
self.baseline_model.make_predictions(pandas_x_test)

cu_predictions, cu_prediction_time =
self.rapids_model.make_predictions(cudf_x_test)

sklearn_mse = self.baseline_model.calculate_mse(y_test,
sklearn_predictions)

cu_mse = self.rapids_model.calculate_mse(y_test, cu_predictions)

return {
"scikit-mse": sklearn_mse,
"cuml-mse": cu_mse.tolist(),
"scikit-train-time": sklearn_train_time,
"cuml-train-time": cu_train_time

}

We can now continue to create our UbiOps deployment and upload our deployment files.
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6.2.5. Create and upload the deployment to UbiOps

Finally, we've reached the last step of the setup process: creating a deployment on Ubiops and
uploading our deployment code to UbiOps. We can use the NVIDIA AI Enterprise 3.1 Rapids
base environment for this, which is the specialized NVIDIA container for the Rapids library. This
base environment is using the NVIDIA RAPIDS container from NVIDIA AI Enterprise.

Let's begin by creating a new deployment.

input_fields = [
{'name': 'n_samples', 'data_type': 'int'},
{'name': 'n_features', 'data_type': 'int'}

]

output_fields = [
{'name': 'scikit-mse', 'data_type': 'double'},
{'name': 'cuml-mse', 'data_type': 'double'},
{'name': 'scikit-train-time', 'data_type': 'double'},
{'name': 'cuml-train-time', 'data_type': 'double'}

]

deployment_template = ubiops.DeploymentCreate(
name=DEPLOYMENT_NAME,
description='Deployment to demonstrate NVIDIA RAPIDS model acceleration',
input_type='structured',
output_type='structured',
input_fields=input_fields,
output_fields=output_fields

)

deployment = core_instance.deployments_create(project_name=PROJECT_NAME,
data=deployment_template)

Now we add a deployment version to the newly created deployment:
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version_template = ubiops.DeploymentVersionCreate(
version=VERSION_NAME,
environment='nvaie3.1-ubuntu22.04-python3.8-rapids',
instance_type='16384mb_t4_nvaie',
maximum_instances=1,
minimum_instances=0,
maximum_idle_time=600, # = 10 minutes
request_retention_mode='full'

)

core_instance.deployment_versions_create(
project_name=PROJECT_NAME,
deployment_name=DEPLOYMENT_NAME,
data=version_template

)

At last, we zip our deployment code and upload it to the newly created deployment version:

import shutil
deployment_archive = shutil.make_archive(DEPLOYMENT_DIR, 'zip', DEPLOYMENT_DIR)

core_instance.revisions_file_upload(
project_name=PROJECT_NAME,
deployment_name=DEPLOYMENT_NAME,
version=VERSION_NAME,
file=deployment_archive

)

6.2.7. Run the deployment

Now it's time to use our deployment. Let's define a function to create a request and a function to
plot results:
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!pip install matplotlib
import matplotlib.pyplot as plt

# function to create deployment requests
def create_request(core_instance, features, samples):
data = {
"n_features": features,
"n_samples": 10**samples

}
request = core_instance.deployment_version_requests_create(
project_name=PROJECT_NAME,
deployment_name=DEPLOYMENT_NAME,
version=VERSION_NAME,
data=data

)
result_save = {
"n_samples": data["n_samples"],
"n_features": data["n_features"],
**request.result

}
print(request.result)
return result_save

def plot_graph(results, time_key, title, feature_list):
plt.figure(figsize=(10, 10))
plt.title(title)
plt.xlabel("Number of samples")
plt.ylabel("Time (s)")
plt.xscale("log")

for i, features in enumerate(feature_list):
filtered_results = [result for result in results if result["n_features"] ==

features]
n_samples = [result["n_samples"] for result in filtered_results]
scikit_times = [result[f'scikit-{time_key}'] for result in filtered_results]

cuml_times = [result[f'cuml-{time_key}'] for result in
filtered_results]

color = 'blue' if features == 5 else 'red'

plt.plot(n_samples, scikit_times, label=f"Scikit-learn {features} features",
linestyle="dashed", color=color)

plt.plot(n_samples, cuml_times, label=f"CuML {features} features",
linestyle="solid", color=color)
plt.legend()
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Let's call our function now and save the results:

features = [5, 50]
range_samples = range(4,7)

results = [create_request(core_instance, feature, n_samples) for n_samples in
range_samples for feature in features]

We can proceed to plot the results now:

plot_graph(results, "train-time", "Training time", features)
plt.show()

We can conclude that using NVIDIA RAPIDS libraries greatly speeds up our training time,
especially on larger datasets.
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6.3. Running an NVIDIA Triton Inference Server
This example is based on the following tutorial:
https://ubiops.com/docs/howto/howto-nvidia-triton/

This example will outline how to run a NVIDIA Triton Inference Server inside a Ubiops
deployment. The NVIDIA Triton Inference Server will be deployed with PyTriton, a Python client
for the Triton Inference Server. This can allow you to use one UbiOps deployment to host
multiple models. We will show how to do this in the following steps:

1. Set up a UbiOps environment
2. Create a Triton Inference Server deployment and bind model(s) to the Triton server
3. Create the UbiOps deployment request method

6.3.1. Environment Setup
We need the nvidia-pytriton package to set-up a Triton server. We can use the NVIDIA AI
Enterprise 3.1 Triton base environment for this, which is the specialized NVIDIA container for
the Triton library. This base environment is using this container from NVIDIA AI Enterprise.

6.3.2. Create a Triton Inference Server deployment and bind model(s) to
the Triton server

Setting up a (basic) Triton server consists of the following steps:

1. Create a Triton object
2. Bind a model to the Triton object
3. Run/serve the Triton object

The implementation of these steps for a UbiOps deployment is shown in the following code
block:

from pytriton.triton import Triton
from pytriton.model_config import ModelConfig
class Deployment:
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def __init__(self):
# Step 1: Call the Triton constructor
self.triton = Triton()
# Step 2: Bind a model to the Triton object
self.triton.bind(
model_name="Your Model name", # TODO: Add your model name
infer_func=self.your_infer_function, # TODO: Add your infer function
inputs=[
# TODO: Add your input tensors

],
outputs=[
# TODO: Add your output tensors

],
config=ModelConfig() # TODO: Add your model config

)

# Step 3: Run the Triton object
self.triton.run()

6.3.3. Create the request method

Finally, we construct the request method of the deployment. This method is called when a
request is made to the deployment. We would like to select the model that is used for the
inference and the data that is sent to this specific model. Therefore, we need to add the two
following inputs to the deployment:

Input Type

json_data String

model_name String

The json_data input contains the data that is sent to Triton Server. The model_name input
contains the name of the model that is used for the inference. The request method looks like
this:

import requests
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class Deployment:
def request(self, data):
model_name = data["model_name"]
json_data = data["json_data"]
print(f"Received json_data: {json_data}")
url = f"http://localhost:8000/v2/models/{model_name}/infer"
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, data=json_data)

return {"output": response.text}

6.3.4. Final code

The final code looks as follows:

from pytriton.triton import Triton
from pytriton.model_config import ModelConfig
import requests

class Deployment:

def __init__(self):
# Step 1: Call the Triton constructor
self.triton = Triton()
# Step 2: Bind a model to the Triton object
self.triton.bind(
model_name="Your Model name", # TODO: Add your model name
infer_func=self.your_infer_function, # TODO: Add your infer function
inputs=[
# TODO: Add your input tensors

],
outputs=[
# TODO: Add your output tensors

],
config=ModelConfig() # TODO: Add your model config

)
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# Step 3: Run the Triton object
self.triton.run()

def request(self, data):

model_name = data["model_name"]
json_data = data["json_data"]

print(f"Received json_data: {json_data}")
url = f"http://localhost:8000/v2/models/{model_name}/infer"

headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, data=json_data)

return {"output": response.text}

We have now created a deployment (and environment) that runs a NVIDIA Triton Inference
Server inside UbiOps. This deployment is able to host multiple models at the same time in a
single deployment, with many more benefits!
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http://localhost:8000/v2/models/%7Bmodel_name%7D/infer


7. More information and resources
You can find more information about installation options for UbiOps at
https://installation-guide.docs.ubiops.com/latest/

The examples are based on the following tutorials and docs pages if you would like more
information:

https://ubiops.com/docs/ubiops_tutorials/tensorflow-training/tensorflow-training/

https://ubiops.com/training-ml-models-on-ubiops/

https://ubiops.com/docs/ubiops_tutorials/nvidia-rapids-benchmark/nvidia-rapids-benchmark-tuto
rial/

https://ubiops.com/docs/howto/howto-nvidia-triton/
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