
ClearML & NVIDIA AI Enterprise Deployment
Guide on VMware vSphere with Tanzu
Version 1.0.2

Table of Contents

Introduction 3

Easier Infrastructure Management 3

More Accessibility for Teams 3

Optimal Cluster Utilization 4

Centralized Control and Visibility 4

Truly Open and Extensible 4

One End-to-End Platform 4

Accelerate Hybrid Cloud 5

Architecture 6

Solution Overview 6

ClearML Cluster 7

ClearML Control Plane (Backend) 7

Prerequisites 9

General ClearML prerequisites 9

Running kubectl and CLI commands 9

Deploy a Tanzu Kubernetes cluster 11

VMware vSphere with Tanzu overview 11

Create a VM Class with GPUs 11

Assign the GPU accelerated VM Class to the Supervisor Namespace 14

Connect to the Supervisor Cluster 16

Create a GPU Accelerated Tanzu Cluster 17

NVIDIA GPU Operator 18

Install the NVIDIA GPU Operator 18

Deploy the ClearML stack 19

Set Up Access Credentials 19

Install the ClearML cluster 20

Configure Role Binding 20

Update Helm Repo Definitions 21

Install the Helm Chart 21

Validate the installation 22

Getting Started 23

Install the ClearML SDK 23

Configure Queues 23

Additional Resources 23

Introduction

ClearML delivers a machine learning solution that maximizes resource utilization and

accessibility while minimizing the DevOps workload

Easier Infrastructure Management
ClearML offers a little- to no-overhead solution for DevOps managing GPU machines. Installed within minutes,

ClearML is the easiest solution to get an NVIDIA DGX™ system or NVIDIA-certified server up and running. As

part of ClearML Orchestrate, the ClearML Agent can be installed on bare metal or as a Kubernetes client.

Bare Metal
ClearML eliminates DevOps overhead when installed on bare metal, making machines instantly and fully

available to machine learning teams. The solution supports containerized applications and virtual

environment applications and is truly plug-and-play – it’s easy to install, with no need to configure any

firewall rules or customize network setup.

A bare metal installation is a turnkey solution that offers fully accessible GPU machines without the need

for Kubernetes installation and maintenance. It is available as a fully managed SaaS service or with on-prem

dedicated support.

Kubernetes
ClearML minimizes DevOps overhead when installed on top of a Kubernetes cluster. As a Kubernetes-native

solution, ClearML provides the user management layer and adds scheduling capabilities that build and

launch job queues for the machine, enabling dynamic GPU slicing for multiple users. ClearML supports

Vanilla Kubernetes, Rancher, OpenShift, and Tizen (VMWare).

The ClearML Kubernetes installation makes it easy for machine learning teams to utilize their GPU

resources without exposing them to Kubernetes or needing to support them.

Slurm
ClearML can also be installed on top of a Slurm cluster, providing the user management layer that makes

orchestration accessible and automated with minimal DevOps overhead.

More Accessibility for Teams
ClearML supports SSO, LDAP integration, and role-based access control. The platform ensures fully secured

access to NVIDIA DGX systems, and users can interact directly with the hardware from their development

environment / IDE.

Platform users can launch jobs directly from the UI programmatically as well as build full automation

pipelines with no additional infrastructure needed. With the ClearML SaaS solution, Data Scientists and ML

Engineers can even launch and manage jobs from the convenience of wherever they happen to be working.

ClearML is certified on NVIDIA AI Enterprise, ISO 27001-certified and provides enterprises with a fully secure

end-to-end platform for continuous machine learning.

Optimal Cluster Utilization
ClearML’s scheduling and automation functionality allows teams to fully utilize their resources. Users can

build pipelines of sequential tasks, and the jobs of all users can be put into queues and prioritized based on

resource availability, ensuring machines are utilized to capacity.

By allowing the user to quickly automate the creation and scheduling of multiple jobs, data scientists can

work more optimally and achieve their research goals faster with no additional overhead.

Centralized Control and Visibility
ClearML provides ML and DevOps teams with detailed information for dashboards as well as analytics that

monitor all resources and workloads. With the ability to set policies based on business goals, the platform

allows for controlled allocation and oversight of resources across departments, projects, and users.

Truly Open and Extensible
Maximize efficiency in your ML development process by utilizing the optimized built-in pipelines, workflows,

and automations in ClearML. ClearML’s modular, open source architecture allows ML teams and DevOps to

seamlessly integrate their own infrastructure and tools for complete management of their MLOps.

One End-to-End Platform
ClearML’s unified, end-to-end platform includes a best-of-breed experiment management module with

scheduling and orchestration to maximize the efficiency of the development process.

ClearML was purpose-built by data scientists and ML practitioners to bring CI/CD methodology to the ML

space, fully automated by NVIDIA hardware. ClearML empowers ML teams to develop, manage, deploy, and

monitor the complete ML lifecycle process from a single fully integrated platform – all with just two lines of

code. With ClearML, customers significantly shorten their time-to-value and time-to-revenue, ensuring ML

projects are executed successfully and make it to production efficiently. The open source platform can

seamlessly integrate with any organization’s existing infrastructure and tools, allowing companies and

teams a fast, frictionless customer onboarding experience and workflow. Organizations can run ClearML on

any infrastructure, whether it is cloud, virtual private cloud (VPC), or on premises.

Accelerate Hybrid Cloud
ClearML provides centralized management and visibility of on-premises and cloud-based resources, making

hybrid cloud ML infrastructure a viable option for organizations. ClearML also provides the ability for

controlled spillover onto cloud infrastructure when needed. Please contact us for more details if you are

interested in an auto-scaling solution for AWS, GCP, or Azure.

Architecture

Solution Overview
ClearML is installed over a Kubernetes Cluster which serves as the infrastructure to log ML experiments’

configuration, data and results as well as orchestrate their execution over a distributed cluster of

lightweight execution agents. ClearML can be deployed on various container orchestrators from Tanzu,

OpenShift, Rancher, and Vanilla Kubernetes to cloud service based orchestrators like Google Kubernetes

Engine (GKE), Azure Kubernetes Service (AKS), and Amazon’s Elastic Kubernetes Service (EKS). ClearML

provides researchers and data scientists frictionless access to compute capacity as provisioned by DevOps

on any mix of compute clusters.

The ClearML installation consists of two components. The ClearML cluster (pictured above, right) and the

ClearML Control Plane or Backend (left). Each of these components include options for how they can be

deployed with the options being explained below.

ClearML Cluster
The ClearML cluster consists of lightweight agents that are installed in the Kubernetes cluster and

orchestrate the workloads local to the deployed infrastructure. ClearML makes use of the default

Kubernetes scheduler to schedule workloads sent by researchers and data scientists based on business

rules and quotas defined in the ClearML Control Plane. The ClearML agents are responsible for sending

monitoring data to the ClearML Control Plane.

The cluster components allow researchers and data scientists to directly submit and interact with

workloads that utilize the compute infrastructure. The cluster includes components that provide the

scheduling and orchestration capabilities to ensure fair sharing of GPU resources while also allowing

bursting of capacity to eliminate idle resources. The cluster components also ensure that any policies set at

an administrative level are enforced to ensure the sharing of GPU resources based on business priorities

while also maintaining secure operation of the cluster.

Researchers and data scientists have various methods for submitting and interacting with their workloads.

They have the ability to submit machine learning workloads via the ClearML Command-Line Interface (CLI),

or via the ClearML GUI. The ClearML GUI allows for the simple submission of workloads by assigning them

to administrator defined queues that implement the desired resource allocation policy.

Each workload’s custom execution environment can be created by the ClearML agents, be they elaborate

python repositories or standalone Jupyter notebooks. This allows administrators to provision available

resources and streamline onboarding new users to the platform.

In addition to all of the tooling that ClearML provides out of the box, it is an open platform in terms of the

tools that your data scientists and researchers will be able to utilize: ClearML allows researchers to

orchestrate workflows with built-in pipelines, or to easily plug in ClearML jobs into workflow tools they are

familiar with like Kubeflow, MLflow, Airflow, JupyterHub and Argo Workflows.

ClearML also provides on-demand availability for Visual Studio Code, Jupyter notebooks and PyCharm.

ClearML Control Plane (Backend)
The ClearML Control Plane stores ML experiments configuration and results, as well as aggregates

monitoring and performance information related to compute infrastructure and running workloads. The

control plane allows for the joining of multiple clusters to a single backend so you can manage and monitor

multiple clusters from a single pane of glass. The control plane component for Saas customers is fully

maintained by ClearML.

Researchers and data scientists use the ClearML web user interface (GUI) to examine their ML experiments’

configuration, logs and results: compare experiments, configure tracking tables and create live reports.

Additionally, the ClearML GUI allows data scientists to easily create new variants of previously executed

experiments facilitating speedy model optimization and accelerating time-to-deployment.

https://clear.ml/docs/latest/docs/pipelines/
https://github.com/allegroai/clearml/blob/master/examples/automation/programmatic_orchestration.py
https://clear.ml/docs/latest/docs/apps/clearml_session
https://github.com/allegroai/clearml-pycharm-plugin

The control plane is also the location where administrative changes can be made to the platform. Some of

these administrative changes include integration with SSO, managing of projects and resource quotas,

toggling of features and managing end users of the platform.

The cluster sends information to the control plane for the purpose of control as well as monitoring and

experiment exploration through dashboards. This includes source control references, execution

environment definitions (such as Docker container references, environment variables and Python

packages), execution logs, and ML metrics.

For artifact storage (such as any debug samples, training data, models, checkpoints and the like) users can

make use of the backend incorporated file server, or use their own storage solution (Local, corporate

network, or cloud based) to guarantee the data does not leave their corporate premises.

The directions below include installation for the SaaS version ClearML.

If you are interested in installing the self hosted version of ClearML where the control plane is hosted in

your Kubernetes cluster, please follow the instructions here:

https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server_kubernetes_helm

https://clear.ml/docs/latest/docs/integrations/storage
https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server_kubernetes_helm

Prerequisites

General ClearML prerequisites
The latest ClearML version supports Kubernetes versions 1.21 through 1.26.

NVIDIA’s GPU Operator is also a prerequisite for using ClearML. Installation instructions for the GPU

Operator are included below.

ClearML leverages Elasticsearch and Mongodb for experiment results and task information databases. If

you are installing your own ClearML control plane, the installation will, by default, install these, but it can

also connect to existing instances installed by an organization.

ClearML also provides unique model serving capabilities as well that allows you to serve and scale Triton

and other inference processes in a flexible and efficient deployment supporting auto-batching and canary

A/B strategies. More information on the requirements for enabling ClearML’s model serving capabilities can

be found at the following link:

https://clear.ml/docs/latest/docs/clearml_serving/clearml_serving_setup

For production installs, it is recommended to leverage ClearML system nodes to reduce downtime and save

CPU cycles on GPU Machines. ClearML recommends that clusters contain two or more CPU worker nodes,

designated for ClearML server. These nodes do not have to be dedicated to ClearML however from a

resource perspective; the ClearML server components require: 4 CPUs, 8GB of RAM and 50GB of Disk

space. ClearML also requires few network settings for pulling container images as well as pushing data to

the control plane. These network requirements are defined in the ClearML cluster setup section.

Helm is another prerequisite for installing the ClearML cluster as well as the NVIDIA GPU Operator. Helm is

a package manager that helps you manage Kubernetes applications using charts that define, install, and

upgrade even the most complex Kubernetes applications.

Installation instructions for Helm are provided below in addition to full documentation at the link provided:

https://helm.sh/docs/intro/install/

● curl -fsSL -o get_helm.sh

https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm

-3

● chmod 700 get_helm.sh

● ./get_helm.sh

For the most up to date information please refer to https://github.com/allegroai/clearml-helm-

charts/blob/main/INSTALL.md

Running kubectl and CLI commands
The commands in the deployment guide are expected to be executed from one of the control nodes of the

cluster or from a node that has the kubeconfig file of the Tanzu cluster exported locally to it.

https://clear.ml/docs/latest/docs/clearml_serving/clearml_serving_setup
https://helm.sh/docs/intro/install/
https://github.com/allegroai/clearml-helm-charts/blob/main/INSTALL.md
https://github.com/allegroai/clearml-helm-charts/blob/main/INSTALL.md

For more information on kubeconfig files and how to use them, please review the official Kubernetes

documentation:

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Deploy a Tanzu Kubernetes cluster

VMware vSphere with Tanzu overview
The goal of this portion of the deployment guide is to provide a blueprint for deploying a Tanzu Kubernetes

cluster with GPU nodes. VMware vSphere with Tanzu directly integrates with vSphere, which provides a

simplified orchestration solution. Tanzu is declarative, so creating and interacting with a GPU-enabled

cluster often requires fewer steps than upstream Kubernetes, and it can be done on-demand. Tanzu lets

you create and operate Tanzu Kubernetes clusters natively in vSphere. These instructions are not designed

to be leveraged for a production environment, but rather to provide a bare minimum setup to demonstrate

the abilities of ClearML in conjunction with VMware vSphere with Tanzu.

The instructions assume you have vSphere installed and you have administrative access to the

infrastructure. The first step will be to ensure you can connect to vCenter to begin managing your

infrastructure.

Create a VM Class with GPUs
To leverage a Tanzu Kubernetes cluster with GPUs, you will need to create a virtual machine class. This

virtual machine class specifies the underlying compute resources both CPU and GPU that will be dedicated

to your Kubernetes worker. VMware vSphere with Tanzu provides default classes for compute or you can

create your own VM classes as described below.

To create your own VM classes for your GPU nodes, first login to vCenter. Navigate to Shortcuts and then to

Workload Management.

On the Services tab of Workload Management, select Manage under the VM Service tile.

Select VM Classes and then select the tile to Create VM Class.

Provide the configuration for the VM class. It is recommended to name the VM class relative to the

resources on the node itself such as GPU type or you can leverage your organizations naming convention

to name and identify the nodes. Provide a vCPU count, Memory allotment and ensure that you select Yes

for the PCI devices from the drop down.

Next on the PCI devices tab, select NVIDIA vGPU from the dropdown and then select the GPU model that

you want to add to your VM class.

After selecting the GPU model, additional details will need to be provided such as the GPU sharing mode

(Time Sharing), GPU Mode (Compute), GPU Memory (typically the maximum memory is allotted) in addition

to the total number of vGPUs per node.

On the final tab, review the details of the VM class and click on Finish to finalize the creation of the VM class.

Assign the GPU accelerated VM Class to the
Supervisor Namespace

After creating a GPU accelerated VM class it will need to be associated with the Supervisor Namespace. VM

classes can reside in one or more namespaces within a Supervisor Cluster. Additionally Supervisor clusters

can include multiple different types of VM classes.

Within vCenter, navigate to inventory and expand your Tanzu cluster and associated namespace. Select the

appropriate namespace and click on Add VM Class or Manage VM Classes.

Upon entering Add VM Class or Manage CM Classes, you can select the check box next to the VM class that

was created in the prior steps as well as any other relevant VM classes to make it available within the

namespace.

Validate that the Content Library is associated with the Supervisor Namespace by clicking on the Add

Content Library button in the VM Service card. Ensure that the VM template is present in the Subscribed

Content Library so it can be used by NVIDIA AI Enterprise.

Connect to the Supervisor Cluster
Identify the IP address of the control plane node

(<KUBERNETES-CONTROL-PLANE-IP-ADDRESS>) and leverage the IP address to connect to the Supervisor

Cluster VM in vCenter.

Use the following command to connect to the Supervisor Cluster VM:

● kubectl vsphere login

--server=<KUBERNETES-CONTROL-PLANE-IP-ADDRESS> --vsphere-username

administrator@vsphere.local --insecure-skip-tls-verify --tanzu-

kubernetes-cluster-namespace <namespace>

Run the following commands on the CLI to ensure you are connected and submitting commands to the

correct cluster:

● kubectl config get-contexts

● kubectl config use-context <context name>

Validate your connection to the cluster by running the following commands to view the outputs of the

nodes that are in the cluster in addition to all of the running pods.

● kubectl get nodes

● kubectl get pods -A

Create a GPU Accelerated Tanzu Cluster
The next step to enabling the groundwork for ClearML is to provision the GPU accelerated TKG cluster. To

ensure that your VM class created in the previous steps is available, run the following kubectl command:

● kubectl get virtualmachineclasses

To validate that the virtual machine class is configured with GPUs, you can describe the VM class to gather

more information.

● kubectl describe virtualmachineclass <vmclass-name>

The final step for creating the cluster will be to use a text editor to create a yaml file that defines the cluster

and includes the VM classes with the GPUs we intend to leverage. An example yaml file below

(tanzucluster.yaml) is provided below with some default parameters.

apiVersion: run.tanzu.vmware.com/v1alpha2

kind: TanzuKubernetesCluster

metadata:

name: tkg-cluster

namespace: tkg-clearml

spec:

distribution:

fullVersion: 1.21.2+vmware.1-tkg.1

settings:

network:

cni:

name: antrea

pods:

cidrBlocks:

- 192.0.2.0/16

serviceDomain: local

services:

cidrBlocks:

- 198.51.100.0/12

storage:

defaultClass: clearml-kubernetes

topology:

controlPlane:

replicas: 1

storageClass: clearml-kubernetes

vmClass: guaranteed-medium

nodePools:

-

name: nodepool-t4

replicas: 2

storageClass: clearml-kubernetes

vmClass: vm-class-t4-16gb

volumes:

-

capacity:

storage: 100Gi

mountPath: /var/lib/containerd

name: containerd

Once the yaml file is edited, it can be applied to deploy the cluster.

● kubectl apply -f tanzucluster.yaml

Check the status of the cluster and wait until the cluster shows ready.

● kubectl get tkc

Once the cluster shows as Ready, you can use the following command to connect to the GPU accelerated

cluster to deploy NVIDIA’s GPU Operator as well as proceed with the installation of ClearML.

● kubectl vsphere login

--server=<KUBERNETES-CONTROL-PLANE-IP-ADDRESS> --vsphere-username

administrator@vsphere.local --insecure-skip-tls-verify --tanzu-

kubernetes-cluster-name tkg-cluster

--tanzu-kubernetes-cluster-namespace tkg-clearml

NVIDIA GPU Operator

Install the NVIDIA GPU Operator
ClearML requires the NVIDIA GPU Operator to be installed on the Kubernetes cluster in order to make the

GPUs available to the ClearML cluster. The NVIDIA GPU Operator uses the operator framework within

Kubernetes to automate the management of all NVIDIA software components needed to provision GPUs.

These components include the NVIDIA drivers (to enable CUDA), Kubernetes device plugin for GPUs, the

NVIDIA Container Runtime, Node Feature discovery for automatic node labeling and DCGM based

monitoring.

The recommended installation steps for installing the NVIDIA GPU Operator are included below and the full

installation instructions including potential customization options are provided by NVIDIA at the following

link:

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html

Add the NVIDIA helm repository:

● helm repo add nvidia https://helm.ngc.nvidia.com/nvidia
&& helm repo update

Install the GPU Operator

● helm install --wait --generate-name -n gpu-operator
--create-namespace nvidia/gpu-operator

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html

Deploy the ClearML stack

Set Up Access Credentials
Begin setting up ClearML by navigating to your SaaS tenant URL. The credentials to authenticate to this

page will be provided by ClearML customer support. For convenience the examples in this guide make use

of the public multi-tenant ClearML service: https://app.clear.ml.

If you are working with a ClearML managed dedicated tenant, the format for your tenant will typically be

https://app.<organization>.hosted.allegro.ai/.

The first step is to create access credentials that will enable the ClearML cluster to authenticate and

communicate with the ClearML backend.

Go to the Settings/Workspace page and click “+ Create new credentials”

A new set of credentials is created. Copy the ClearML access key and secret key for use further down the

installation process.

https://app.clear.ml/

Install the ClearML cluster

Once all of the prerequisites have been completed including the provisioning of a vSphere Tanzu cluster

and installation of the NVIDIA GPU Operator, proceed to the installation of ClearML.

Configure Role Binding

Get the latest role binding definitions file: https://github.com/allegroai/clearml-helm-

charts/blob/main/platform-specific-configs/tanzu/rolebinding.yaml

Fill in your configured Kubernetes namespace, which should result with a rolebinding.yaml file similar to:

https://github.com/allegroai/clearml-helm-charts/blob/main/platform-specific-configs/tanzu/rolebinding.yaml
https://github.com/allegroai/clearml-helm-charts/blob/main/platform-specific-configs/tanzu/rolebinding.yaml

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: clearml-tanzu-rolebinding

namespace: tkg-clearml

roleRef:

 kind: ClusterRole

 name: psp:vmware-system-privileged

 apiGroup: rbac.authorization.k8s.io

subjects:

- kind: Group

 apiGroup: rbac.authorization.k8s.io

 name: system:serviceaccounts

Apply the role binding definitions:

● kubectl apply -f rolebinding.yaml

Update Helm Repo Definitions

Add the ClearML helm repo:

● helm repo add allegroai
https://allegroai.github.io/clearml-helm-charts

Update helm repos:

● helm repo update

Install the Helm Chart

● helm install clearml-agent allegroai/clearml-agent -
-set clearml.agentk8sglueKey=ACCESSKEY --set

clearml.agentk8sglueSecret=SECRETKEY --set

agentk8sglue.apiServerUrlReference=“https://api.cle

ar.ml" --set

agentk8sglue.fileServerUrlReference=“https://files.

clear.ml" --set

agentk8sglue.webServerUrlReference=“https://app.cle

ar.ml"

 This deploys the full ClearML stack on the cluster in your configured namespace.

For the most up to date installation instructions please refer to the following link:

https://github.com/allegroai/clearml-helm-charts/blob/main/INSTALL.md

https://app.clear.ml/
https://app.clear.ml/
https://github.com/allegroai/clearml-helm-charts/blob/main/INSTALL.md

Validate the installation
To validate that the install was successful, run the following command to validate that all of the pods in the

tkg-clearml namespace are running.

● kubectl get pods -n tkg-clearml

Once the installation is complete, you can go to the Workers and Queues page of the Saas tenant where

your cluster will appear as an available worker.

Note that your cluster needs to be configured for network access to your SaaS tenant.

Getting Started

Install the ClearML SDK
To enable researchers to log their work onto ClearML, they should install the ClearML python package

● pip install clearml

Experiments can be logged automatically by instrumenting their code with just 2 lines and executing them.

See https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps.

Existing code can be launched on your cluster:

● clearml-task --project my_proj --name my_experiment --script
experiment.py --args epochs=1 --queue default

See https://clear.ml/docs/latest/docs/apps/clearml_task

Configure Queues
ClearML queues are the mechanism through which experiments are scheduled for execution on the

ClearML cluster.

You can implement flexible resource allocation policies by defining specific queues to match each specific

resource requirement (e.g. pods utilizing a specific number of GPUs), and configure the ClearML cluster to

allocate the desired resource budget to that queue.

For more information on using ClearML queues for orchestration, see the following link:

https://clear.ml/docs/latest/docs/webapp/webapp_workers_queues

Additional Resources
ClearML provides a diverse set of educational resources for enabling data scientists and researchers to

supercharge their ML workflows. These resources are available at the following links:

● Quickstart Guides

● Video Tutorials

● Integrations

https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps
https://clear.ml/docs/latest/docs/apps/clearml_task
https://clear.ml/docs/latest/docs/webapp/webapp_workers_queues
https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps
https://www.youtube.com/playlist?list=PLMdIlCuMqSTnoC45ME5_JnsJX0zWqDdlO
https://clear.ml/docs/latest/docs/integrations/libraries

